这意味着Raptor Lake Refresh时代最高32线程下降到了Arrow Lake的最高24线程,这样做的好处是每一个计算核心面积都有所缩小,但每周期指令数(Instructions Per Cycle,IPC)提升,通过以退为进的方式,提升多线程的综合性能表现,从而获得整体功耗降低的同时,多线程性能提升,同时平台温度降低的效果。
其中P-Core部分的Lion Cove架构使用了全新的多层数据缓存设计,包含1个具备4周期延迟的48KB L0D缓存,1个9周期延迟的192KB L1D缓存,以及1个17周期的3MB L2缓存。这意味着在9个时钟周期内,可以获得L0D L1D的240KB缓存。相比上一代Meteor Lake P-Core的Redwood Cove架构,9个时钟周期内只能有48KB缓存。不仅如此,数据转换后备缓冲区(DTLB)也进行了修订,其深度从96页增加到128页,以提高其命中率。
与此同时,英特尔还增加了第三个地址生成单元(Address Generation Unit,AGU)以进一步提升存储性能。负载单元和存储单元管道数量均达到3个,在英特尔大部分架构中,负载单元通常多于存储单元。可以看到英特尔正在尝试在CPU设计中投入更多的缓存设计来解决性能问题,特别是随着CPU系统设计愈发复杂,缓存子系统有必要跟进增加,以保持其正常运行,从而成为提升性能与执行效率的关键。这让IPC(Instructions Per Cycle,每个时钟周期指令数)提升幅度达到了30%,动态电源效率提升了20%。
E-Core部分Skymont也使用了全新的设计。包括在一个时钟周期内同时解码并执行9条指令,也就是9宽解码,比上一代E-Core的Crestmont架构增加了50%。通常而已,解码阶段的宽度越大,处理器的性能越高,可以更有效地利用其资源,加快指令的执行速度。并且功耗效率得到了明显提升,单线程性能提升1.7倍的情况下,功耗仅为Meteor Lake LP E-Core的三分之一。